276°
Posted 20 hours ago

Snakes Coloring Book for Kids: Reptilian Drawing Book for Child of All Ages | Gift Idea for Childrens and Toddlers Who Like Animals!

£9.9£99Clearance
ZTS2023's avatar
Shared by
ZTS2023
Joined in 2023
82
63

About this deal

When you’re ready to start drawing, begin by sketching out the general shape of the reptile. Then, start adding in the details like the scales, eyes, and mouth. You may also want to add some shading to give your reptile some depth and dimension. We used the 2009 Human Footprint index (HF) 42—the most up-to-date HF dataset—to designate spatial patterns of human pressure. The HF index evaluates each grid cell based on the intensity of eight measures of human pressure (built environments, crop land, pasture land, human population density, night-time lights, railways, roads, navigable waterways), weighted according to estimates of their relative levels of human pressure 41, 42, and assigns an HF value between 0 (lowest human pressure) and 50 (greatest human pressure) to each cell 42. We up-scaled the HF data from its original 1 × 1 km resolution to our 96.5 × 96.5 km grid for species distribution data by taking the mean value from all 1 km x 1 km grid cells coincident with each 96.5 km x 96.5 km grid cell (Supplementary Fig. 8). Spatial value metric for conserving PD Here, we present three new metrics, two of which combine human pressure (to measure vulnerability), PD and range size (to measure irreplaceability). (1) Our spatial metric, human-impacted phylogenetic endemism (HIPE), is an extension of standard PE that weighs phylogenetic branches in space in relation to the level of human pressure across the range of each species. We use HIPE to identify high value regions that support irreplaceable reptilian PD. We also develop two species-level metrics. (2) Terminal endemism (TE) weights the unique contribution of each species to global PD—the terminal branch length (TBL)—by its range size. (3) Human-impacted terminal endemism (HITE) extends TE by weighting the TBL of each species by the human pressure across its range. We use HITE to identify priority species with small ranges, heavily impacted by humans, whose conservation would safeguard significant amounts of unique PD. We calculated these metrics for all tetrapod clades globally. At Ancient Origins, we believe that one of the most important fields of knowledge we can pursue as human beings is our beginnings. And while some people may seem content with the story as it stands, our view is that there exist countless mysteries, scientific anomalies and surprising artifacts that have yet to be discovered and explained.

Kuhn, T. S., Mooers, A. & Thomas, G. H. A simple polytomy resolver for dated phylogenies. Methods Ecol. Evol. 2, 427–436 (2011). Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, 1–5 (2015). Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK Any binning of the original HF data into broader categories has the potential to amplify relatively small differences in the raw data (e.g. under our categorisation method, a grid cell of HF = 11 and one of HF = 12 are considered less similar than they are to grid cells where HF = 6 and HF = 50, respectively), leading to potential under- and over-estimations of human pressure across grid cells, relative to one another. However, this problem is inherent in any categorisation of human pressure data—from the original 51 HF categories (0–50) at one extreme to a binary categorisation at the other—due to the non-linear, and currently poorly understood, relationship between HF and its impact on biodiversity. Next, it’s time to add some details. Start by drawing the scales on the reptile’s skin. Remember that reptile skin is often bumpy, so don’t be afraid to add some texture to your drawing.Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005). Safi, K. & Pettorelli, N. Phylogenetic, spatial and environmental components of extinction risk in carnivores. Glob. Ecol. Biogeogr. 19, 352–362 (2010).

When a branch is distributed entirely across grid cells with the same level of human pressure (e.g. very high pressure; see Methods), its PD is divided equally amongst each grid cell under both HIPE and PE. However, when a branch is distributed across grid cells of differing human pressure, the grid cells with lower human pressure receive a greater proportion of the branch’s PD under HIPE than they do under PE. Conversely, grid cells in the distribution with higher human pressure (e.g. very high) receive a smaller proportion of the branch’s PD under HIPE than they do under PE.http://www.geocities.com/psyop911/irish-times-sympathy-for-the-devil-in-a-land-where-lucifer-reigns.html We used updated distribution polygons for turtles, crocodilians and lepidosaurs from the Global Assessment of Reptile Distributions (GARD) 32. We used published phylogenies for lepidosaurs 47, crocodilians 53 and turtles 54. The crocodilian and turtle phylogenies used were single, consensus, fully resolved phylogenies. To capture phylogenetic uncertainty around the taxonomically imputed lepidosaur phylogenies, we randomly sampled 100 fully resolved phylogenies from a distribution of 10,000 trees 47 and used each phylogeny in our analyses to generate median values of PD and PD-based metrics. We matched the species in each phylogeny to the distribution data using the taxonomy from the July 2018 version of the Reptile Database 27. We can therefore use the ratio of HIPE to PE for grid cells experiencing the highest level of human pressure (very high; HF ≥ 12) to identify regions where large proportions of the PD present is under very high human pressure. These are represented by grid cells under very high human pressure and where the ratio of HIPE to PE approaches 1, indicating the PD is largely being divided equally among grid cells with very high human pressure. The Western Ghats, large parts of the Caribbean, the Philippines, Japan, and the Mediterranean harbour reptilian PD that is overwhelmingly restricted to regions of very high human pressure (HIPE/PE ratio > 0.9, Fig. 3c). Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. 104, 13384–13389 (2007). Given the large proportion of Data Deficient and unassessed reptiles (~10% and ~34% of all species, respectively), and their potentially high extinction risk, such loss of PD may be much greater, especially where data deficiency for both extinction risk and phylogenetic relationships intersect. For example, the enigmatic lizard genus Dibamus is represented by 22 species in our study (of the 24 species recognised globally 27), sixteen of which are either unassessed or listed as Data Deficient by the IUCN (as of December 2019). Fifteen of these 22 species are included in the phylogeny we used despite having no genetic data available 47, and 12 are known only from their type locality 48.

Asda Great Deal

Free UK shipping. 15 day free returns.
Community Updates
*So you can easily identify outgoing links on our site, we've marked them with an "*" symbol. Links on our site are monetised, but this never affects which deals get posted. Find more info in our FAQs and About Us page.
New Comment